Un equipo de científicos israelíes descubrió una fuente inagotable de células madre para la medicina e informó que la encontró en los tejidos de los propios pacientes.
Una de las grandes trabas para la aplicación clínica de las células madre iPS, las estrellas emergentes de la medicina regenerativa, es la ineficacia de su obtención a partir de células de la piel. Sólo una minúscula fracción de éstas, menos del 1%, logra retrasar su reloj para recuperar su primitiva condición de células madre, y por lo tanto su capacidad para regenerar cualquier tejido y órgano del cuerpo.
El nuevo descubrimiento identifica una forma de superar esa barrera y llevar la eficacia hasta casi el 100%.
La tecnología de las células madre iPS, se desarrolló en los últimos años como una salida a los conflictos éticos, políticos y religiosos que suscitaron en la década anterior las células madre embrionarias. Mientras que estas últimas requieren la destrucción de embriones humanos de dos semanas, las iPS proceden de la reprogramación de simples células de la piel de un paciente. Esto no sólo evita el uso de embriones, sino que produce un material genéticamente idéntico al paciente en cuestión, lo que evitará su rechazo en caso de serle trasplantado.
El científico israelí, Dr. Yaakov Hanna, y su equipo de expertos del Instituto Weizmann de Rehovot, lograron identificar lo que parece ser el principal impedimento para una conversión eficaz de las células adultas en células iPS.
Se trata de un gen conservado en los mamíferos, llamado Mbd3. Hanna publicó en la revista «Nature» que la inactivación de ese gen, unida al procedimiento convencional de retrasar el reloj celular, permite a las células adultas - ya sean de animales o humanas - convertirse en células iPS con una eficacia cercana al 100%. No sólo funciona con la piel, sino también con otros tipos de tejido, lo que también incrementa las posibles fuentes de material para el futuro.
La técnica de reprogramación ideada por el investigador japonés Shinya Yamanaka - que recibió por ello el último premio Nobel de Medicina - sorprendió a la comunidad científica por su gran simplicidad. Sólo requiere tratar las células de la piel con cuatro factores de transcripción, o genes que regulan a otros genes. La otra cara de la moneda es que esas células adultas son muy resistentes a abandonar su naturaleza diferenciada, dedicada a las peculiaridades del oficio de ser piel, y recuperar su primitiva condición pluripotente, capaz de convertirse en cualquier otro tipo celular.
Los fibroblastos, o células que van regenerando la piel, se convierten en células madre iPS con menos de 1% de eficiencia. Esta ineficacia «está obstaculizando la generación de diversos tipos celulares para la investigación y la medicina», según reconocieron en «Nature» los biólogos del desarrollo Kyle Loh, de la Universidad de Stanford, y Bing Lim, del Instituto del Genoma de Singapur. Este es el obstáculo que pretendía despejar el trabajo de Hanna y los científicos del Instituto Weizmann.
Casi todas las células del cuerpo tienen el mismo genoma, una copia del genoma humano que heredaron del cigoto, la célula formada por fusión de un óvulo y un espermatozoide. Que una célula de la piel sea distinta de una del hígado o de una neurona se debe a que cada una tiene activos distintos factores de transcripción, o genes que regulan a otros genes. Esta organización jerárquica de la regulación genética permite a unos pocos factores de transcripción regular grandes redes de genes subordinados, y en el fondo es la razón de que funcione la técnica de Yamanaka: que sólo cuatro factores de transcripción, llamados Oct4, Sox2, Klf4 y Myc, basten para reprogramar células de la piel como células madre. Pero ¿por qué la eficacia es tan baja?
Los científicos israelíes descubrieron ahora que los propios reprogramadores Oct4, Sox2, Klf4 y Myc, los llamados factores de Yamanaka en el mundillo, reclutan a su servicio a un gen represor, llamado Mbd3, que se dedica a reprimir a los mismos genes inmaduros que están intentando activar.
Según ellos, basta inactivar a ese represor Mbd3 para que la balanza se desequilibre y la eficacia de la reprogramación ascienda al 100%.
Notas relacionadas:
Israel convierte células de piel en células de músculo cardíaco
Israel: Crean hueso humano a partir de células madre
Israel: Controlan enfermedad de Stephen Hawking